Dystroglycan binding to laminin alpha1LG4 module influences epithelial morphogenesis of salivary gland and lung in vitro.
نویسندگان
چکیده
Dystroglycan is a receptor for the basement membrane components laminin-1, -2, perlecan, and agrin. Genetic studies have revealed a role for dystroglycan in basement membrane formation of the early embryo. Dystroglycan binding to the E3 fragment of laminin-1 is involved in kidney epithelial cell development, as revealed by antibody perturbation experiments. E3 is the most distal part of the carboxyterminus of laminin alpha1 chain, and is composed of two laminin globular (LG) domains (LG4 and LG5). Dystroglycan-E3 interactions are mediated solely by discrete domains within LG4. Here we examined the role of this interaction for the development of mouse embryonic salivary gland and lung. Dystroglycan mRNA was expressed in epithelium of developing salivary gland and lung. Immunofluorescence demonstrated dystroglycan on the basal side of epithelial cells in these tissues. Antibodies against dystroglycan that block binding of alpha-dystroglycan to laminin-1 perturbed epithelial branching morphogenesis in salivary gland and lung organ cultures. Inhibition of branching morphogenesis was also seen in cultures treated with polyclonal anti-E3 antibodies. One monoclonal antibody (mAb 200) against LG4 blocked interactions between a-dystroglycan and recombinant laminin alpha1LG4-5, and also inhibited salivary gland and lung branching morphogenesis. Three other mAbs, also specific for the alpha1 carboxyterminus and known not to block branching morphogenesis, failed to block binding of alpha-dystroglycan to recombinant laminin alpha1LG4-5. These findings clarify why mAbs against the carboxyterminus of laminin alpha1 differ in their capacity to block epithelial morphogenesis and suggest that dystroglycan binding to alpha1LG4 is important for epithelial morphogenesis of several organs.
منابع مشابه
Non-muscle alpha-dystroglycan is involved in epithelial development
The dystroglycan complex is a transmembrane linkage between the cytoskeleton and the basement membrane in muscle. One of the components of the complex, alpha-dystroglycan binds both laminin of muscle (laminin-2) and agrin of muscle basement membranes. Dystroglycan has been detected in nonmuscle tissues as well, but the physiological role in nonmuscle tissues has remained unknown. Here we show t...
متن کاملData supporting chitosan facilitates structure formation of the salivary gland by regulating the basement membrane components
To investigate the role of basement membrane (BM) in chitosan-mediated morphogenesis of the salivary glands, the embryonic submandibular gland (SMG) experimental model was used. Chitosan promotes branching at distinct stages in SMG morphogenesis. When enzymes such as type IV collagenase, dispase, and cathepsin B were used to digest the BM components, the morphogenetic effect mediated by chitosa...
متن کاملLaminin alpha1 globular domains 4-5 induce fetal development but are not vital for embryonic basement membrane assembly.
During early mouse embryogenesis, each laminin (Lm) chain of the first described Lm, a heterotrimer of alpha1, beta1, and gamma1 chains (Lm-1), is essential for basement membrane (BM) assembly, which is required for pregastrulation development. Individual domains may have other functions, not necessarily structural. The cell binding C terminus of Lm alpha1 chain contains five Lm globular (LG) d...
متن کاملLoss of α-Dystroglycan Laminin Binding in Epithelium-derived Cancers Is Caused by Silencing of LARGE*S⃞♦
The interaction between epithelial cells and the extracellular matrix is crucial for tissue architecture and function and is compromised during cancer progression. Dystroglycan is a membrane receptor that mediates interactions between cells and basement membranes in various epithelia. In many epithelium-derived cancers, beta-dystroglycan is expressed, but alpha-dystroglycan is not detected. Her...
متن کاملThe role of extracellular matrix in the morphogenesis and differentiation of salivary glands.
The processes of morphogenesis and cytodifferentiation are partially linked, independently regulated processes. The full expression of both processes is modulated or controlled, at least in part, by components of the extracellular matrix. This paper reviews the body of work that demonstrates a role for epithelial-mesenchymal interactions and various extracellular matrix molecules in the inducti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Differentiation; research in biological diversity
دوره 69 2-3 شماره
صفحات -
تاریخ انتشار 2001